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Abstract. Brownian particles moving in a spatially asymmetric but periodic potential (ratchet), with an
external load force and connected to an alternating hot and cold reservoir, are modeled as a microscopic
heat engine, referred to as the Brownian heat engine. The heat flow via both the potential energy and the
kinetic energy of the particles are considered simultaneously. The forward and backward particle currents
are determined using an Arrhenius’ factor. Expressions for the power output and efficiency are derived
analytically. The maximum power output and efficiency are calculated. It is expounded that the Brownian
heat engine is always irreversible and its efficiency cannot approach the efficiency ηC of the Carnot heat
engine even in quasistatic limit. The influence of the main parameters such as the load, the barrier height
of the potential, the asymmetry of the potential and the temperature ratio of the heat reservoirs on the
performance of the Brownian heat engine is discussed in detail. It is found that the Brownian heat engines
may be controlled to operate in different regions through variation of some parameters.

PACS. 05.40.Jc Brownian motion – 05.70.-a Thermodynamics – 05.60.-k Transport processes

1 Introduction

Recently, Brownian (microscopic) heat engines have at-
tracted much attention for the utilization of energy re-
sources available at the microscopic scale and the minia-
turization of devices demanding tiny engines that operate
at the same scale. A Brownian heat engine (motor), which
appeared in Feynman’s famous textbook for the first time
as a thermal ratchet [1], is a machine that can rectify
thermal fluctuation to produce a directed current and has
been studied and applied in some research fields [2–5].
Usually, Brownian heat engines are spatially asymmet-
ric but periodic structures, in which the transportation
of Brownian particles is induced by some non-equilibrium
processes [6,7]. Typical examples are external modulation
of an underlying potential [8–11], an activation of an ex-
ternal force [12–14], a non-equilibrium chemical reaction
coupled to a change of the potential [15] or a contact with
the reservoirs at different temperatures [16–18].

Brownian heat engines driven by a contact with
the reservoirs at different temperatures, i.e., thermally
driven Brownian heat engines, were first proposed by
Buttiker [16], van Kampen [17], and Landauer [18] and
have been investigated since by many researchers [19–25].
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Derenyi and Astumian [19] found that the efficiency of
thermally driven Brownian heat engines can approach the
efficiency of the Carnot heat engine under the quasistatic
limit. The same results were also obtained in Matsuo and
Sasa’s work [21] using stochastic energetic theory.

Most of the works mentioned above are limited to the
case of heat flow due to the change of the potential en-
ergy of Brownian particles, while the heat flow due to the
change of the kinetic energy of Brownian particles has not
been taken into account. It is very necessary and signif-
icant to consider simultaneously the heat flows via both
the potential and kinetic energies in the Brownian heat
engines, because the heat flow via the kinetic energy is ir-
reversible and results in a large influence on the efficiency
of the Brownian heat engines.

In the present paper, we will consider the heat flows
via the potential and kinetic energies of Brownian parti-
cles and derive the expressions of the power output and
efficiency of an irreversible Brownian heat engine. More-
over, the influence of some main parameters on the perfor-
mance of the Brownian heat engine is analyzed, and con-
sequently, some novel results, which can reveal the general
performance characteristics of the Brownian heat engine,
are obtained. Finally, it is proposed that the Brownian
heat engine may be controlled to operate in special cho-
sen states through the adjustment of some parameters.
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2 A thermally driven Brownian heat engine

Consider Brownian particles moving in a spatially asym-
metric but periodic potential (ratchet) with an external
load force f . The particles are periodically in contact with
two heat reservoirs along the space coordinate [19,23,24],
as shown in Figure 1, where Ṅ+ and Ṅ− are, respec-
tively, the numbers of forward and backward jumps per
unit time, TH and TC are, respectively, the temperatures
of the hot and cold reservoirs, L1 and L2 are, respec-
tively, the lengths of the left and right parts of the ratchet,
L = L1 + L2 is the period length of the potential, and E
is the barrier height of the potential. It should be pointed
out that the continuous piecewise linear potential shown
in Figure 1 is only characterized by the parameters E, L1

and L2 and is just one of the feasible selections, which
may be taken as an example for readers’ convenience.
There are two different driving factors for Brownian parti-
cles. The first one is noise-induced transport, namely, the
ratchet effect. The second one is the temperature differ-
ence that makes the particles move from the high- to the
low-temperature reservoir. E + fL1 is the energy needed
by a particle for a forward jump, while E − fL2 is the
energy needed by a particle for a backward jump. The left
part (Region I or I′) of a period ratchet is contacted with
the hot reservoir at temperature TH and the right one (re-
gion II or II′) is contacted with the cold reservoir at tem-
perature TC . It is assumed that the rates of both forward
and backward jumps are proportional to the correspond-
ing Arrhenius’ factor [22] and the system is in a state of
stable flow, so that the numbers of forward and backward
jumps per unit time are, respectively, determined by

Ṅ+ = (1/t) exp[−(E + fL1)/(kBTH)] (1)

and
Ṅ− = (1/t) exp[−(E − fL2)/(kBTH)], (2)

where kB is the Boltzmann constant and t is a propor-
tionality constant with a time dimension.

If Ṅ+ > Ṅ−, the ratchet works as a two-reservoir heat
engine. When Brownian particles move in different re-
gions, the change of the potential energy will result in heat
exchange between the heat engine and the heat reservoirs.
The heat flow from the hot reservoir to the heat engine
via potential is

Q̇pot
H = (Ṅ+ − Ṅ−)(E + fL1) (3)

and the heat flow from the heat engine to the cold reservoir
via potential is

Q̇pot
C = (Ṅ+ − Ṅ−)(E − fL2). (4)

The heat flow resulting from the change of the kinetic en-
ergy of Brownian particles is much more complicated [19].
When the particle lies in a region, it is in equilibrium
with a heat reservoir. According to the theory of en-
ergy equipartition, the average kinetic energy per parti-
cle is equal to 1/2kBT . When the forward particles leave
region I (the hot reservoir) and enter region II (the cold

Fig. 1. Schematic diagram of a thermally driven Brownian
heat engine.

reservoir), each particle will release 1/2kB(TH − TC) en-
ergy to the cold reservoir to reduce its average kinetic
energy. Thus, owing to the change of the kinetic energy
of Brownian particles, the first part of heat flow from the
heat engine to the cold reservoir is Q̇kin

C1 = 1/2Ṅ+kB(TH−
TC). Similarly, when the backward particles leave region
II (the cold reservoir) and enter region I (the hot reser-
voir), each particle will absorb 1/2kB(TH − TC) energy
from the hot reservoir to raise its average kinetic energy.
The first part of heat flow from the hot reservoir to the
heat engine is Q̇kin

H1 = 1/2Ṅ−kB(TH − TC). In order to
keep the heat engine operate continuously and stably, the
particles in region I must be supplied from the neighbor
region II′, so each particle will pick up 1/2kB(TH − TC)
energy from the hot reservoir to raise its average ki-
netic energy. Obviously, owing to the change of the ki-
netic energy of Brownian particles, the second part of
heat flow from the hot reservoir to the heat engine is
Q̇kin

H2 = 1/2Ṅ+kB(TH − TC). Similarly, the particles in
region II must be supplied from neighbor segment I′ and
each particle will release 1/2kB(TH − TC) energy to the
cold reservoir to reduce its average kinetic energy. Conse-
quently, the second part of heat flow from the heat engine
to the cold reservoir is Q̇kin

C2 = 1/2Ṅ−kB(TH − TC). It is
seen from the above analysis that the total heat flow from
the hot reservoir to the heat engine due to the change of
the kinetic energy of Brownian particles is equal to that
from the heat engine to the cold reservoir, i.e.,

Q̇kin
H = Q̇kin

H1 + Q̇kin
H2 =

1
2
kB(Ṅ+ + Ṅ−)(TH − TC)

= Q̇kin
C1 + Q̇kin

C2 = Q̇kin
C ≡ Q̇kin. (5)

It can be seen from equation (5) that the energy
1/2kB(Ṅ+ +Ṅ−)(TH −TC) is transferred completely from
the heat reservoir to the cold reservoir. This indicates the
inherently irreversible nature of this heat flow.

It is found from the above results that the total heat
flow absorbed from the hot reservoir is

Q̇H = Q̇pot
H + Q̇kin

H = (Ṅ+ − Ṅ−)(E + fL1)

+
1
2
kB(Ṅ+ + Ṅ−)(TH − TC) (6)
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η =
Ẇ

Q̇H

=
(e−(ε+xµ)−e−(ε−x+xµ)/τ)x

(e−(ε+xµ)−e−(ε−x+xµ)/τ)(ε + xµ)+ 1
2
(e−(ε+xµ)+e−(ε−x+xµ)/τ)(1 − τ )

, (9)

Fig. 2. Dimensionless power output W ∗ varying with the di-
mensionless load x for some given parameters: (a) ε = 2.0 and
τ = 0.1, (b) µ = 0.3 and τ = 0.1.

and that the total heat flow released to the cold reservoir is

Q̇C = Q̇pot
C + Q̇kin

C = (Ṅ+ − Ṅ−)(E − fL2)

+
1
2
kB(Ṅ+ + Ṅ−)(TH − TC). (7)

Thus, the power output and efficiency of the Brownian
heat engine may be, respectively, expressed as

.

W = Q̇H − Q̇C = (Ṅ+ − Ṅ−)fL

= kBTH(e−(ε+xµ) − e−(ε−x+xµ)/τ )x/t (8)

and
see equation (9) above

where x = fL/(kBTH) is the dimensionless load,
ε = E/(kBTH) indicates the dimensionless barrier height
of the potential, τ = TC/TH is the temperature ratio of
the cold to the hot reservoir and µ = L1/L. Equations (8)
and (9) show clearly that the heat flow due to the change
of the kinetic energy of Brownian particles does not af-
fect the power output of the Brownian heat engine, but it
affects the efficiency of the Brownian heat engine.

Fig. 3. Efficiency η varying with the dimensionless load x for
some given parameters: (a) ε = 2.0 and τ = 0.1, (b) µ = 0.3
and τ = 0.1. The dotted line indicates the efficiency ηC of the
Carnot heat engine and the dashed lines indicate the efficiency
ηpot of the Brownian heat engine, which is defined by ηpot =
Ẇ/Q̇pot

H [19].

3 The maximum power output and efficiency

It is clearly seen from equations (8) and (9) that when
x = 0 and x = (1−τ)ε

(τ−1)µ+1 ≡ xmax, both the power out-
put and efficiency are equal to zero. Their physical mean-
ings are very clear. When x = 0, the engine runs without
a load, so that Q̇H is equal to Q̇C , which indicates that
the heat absorbed from the hot reservoir by the heat en-
gine is completely passed to the cold reservoir and neither
power output nor efficiency is obtained. When x = xmax,
the net current of the particles (Ṅ = Ṅ+ − Ṅ−) is equal
to zero, so that Q̇H is equal to Q̇C once again and neither
power output nor efficiency is obtained. Thus, if and only
if the relation 0 < x < xmaxis satisfied, can the ratchet
work as a two-reservoir heat engine.

Using equations (8) and (9), one can plot the W ∗ ∼ x,
η ∼ x curves of the Brownian heat engine, as shown in
Figures 2 and 3, respectively, where W ∗ = Ẇ t/(kBTH).
The curves in Figure 2 show that the power output first
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Fig. 4. The W ∗
max ∼ ε curve for some given parameters µ = 0.3

and τ = 0.1.

increases and then decreases as x increases. When x =
xW , the power output attains its maximum. It is easily
found from equation (8) and its extremal condition that
xW is determined by

e(ε+xµ)−(ε−x+xµ)/τ = (τ − τxµ)/(τ + x − xµ). (10)

The curves in Figure 2a show that W ∗
max will decrease

and xmax will increase when µ increases, while xW is not
a monotonic function of µ. The curves in Figure 2b show
that that xmax and xW will increase when the dimen-
sionless barrier height of the potential ε increases, while
the dimensionless maximum power output W ∗

max is not a
monotonic function of ε, as shown in Figure 4. It is seen
from Figure 4 that when ε → 0 and ε → ∞, W ∗

max = 0.
When ε = εopt, W ∗

max = (W ∗
max)max. In fact, when ε → 0,

the ratchet effect disappears and no particle currents oc-
cur. When ε → ∞, the particles cannot pass the barrier
of the potential and no particle currents occur.

The curves in Figure 3 show that the efficiency first in-
creases and then decreases as x increases. When x = xη,
the efficiency of the Brownian heat engine attains its max-
imum ηmax, where ηmax is only the maximum efficiency for
a set of particularly chosen parameters µ, τ and ε, but not
the general maximum efficiency of this system. Further
analysis shows that ηmaxwill increase with the increase of
µ and ε for a given τ . It is easily found from equation (9)
and its extremal condition that xη is determined by

Ae−2(ε+xµ)+Be−2(ε−x+xµ)/τ+Ce−(ε+xµ)−(ε−x+xµ)/τ = 0,
(11)

where A = ε + (1 − τ)/2, B = ε − (1 − τ)/2 and
C = −2ε − xµ + xµτ − (1 − µ)(1 − τ)x/τ . The curves
in Figure 3 also show that when the heat flow via kinetic
energy is considered, the efficiency η cannot approach the
efficiency ηC of the Carnot heat engine, because there ex-
ists an irreversible heat loss due to the change of kinetic
energy. When the heat flow via kinetic energy is not con-
sidered [19], the efficiency ηpot of the Brownian heat en-
gine is a monotonically increasing function of x. When
x = xmax, i.e., the net current of the particles is equal
to zero, ηpot approaches ηC [21], as shown by the dashed
curves in Figure 3a. In addition, it is seen from Figure 3
that the efficiency is an increasing function of µ and ε.

Fig. 5. Dimensionless power output W ∗ varying with the ef-
ficiency η for some given parameters: (a) ε = 2.0 and τ = 0.1,
(b) µ = 0.3 and τ = 0.1.

4 The power output versus efficiency
characteristics

In order to understand further the general characteristics
of the Brownian heat engine, equations (8) and (9) can be
used to generate the power output versus efficiency curves,
as shown in Figure 5. It is seen from Figures 2, 3 and 5 that
when the heat engine is operated in the region of x ≤ xW

or x ≥ xη, the power output will decrease as the efficiency
decreases. When the heat engine is operated in the region
of xW ≤ x ≤ xη, the power output will increase as the
efficiency decreases, and vice versa. Through the choice of
the parameters x, µ, ε and τ , the Brownian heat engines
may be controlled to operate under different behaviour
regimes.

5 Conclusions

The performance of a one dimensional thermally driven
Brownian heat engine is studied. It is found that the heat
flow 1/2kB(Ṅ+ + Ṅ−)(TH − TC) due to the change of the
kinetic energy of the particles is transferred completely
from the hot to the cold reservoir, the Brownian heat en-
gine is always irreversible and its efficiency cannot ap-
proach the efficiency ηC of the Carnot heat engine even in
the quasistatic limit. It is also found that the influence of
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the load, the barrier height of the potential, the asymme-
try of the potential and the temperature ratio of the heat
reservoirs on the performance of the Brownian heat en-
gine is obvious. Brownian heat engines may be controlled
to operate under different regimes through the choice of
the parameters x, µ, ε and τ . When x = xW and ε = εopt

are chosen, the Brownian heat engines are operated in the
state of maximum power output. When x = xη is chosen,
the Brownian heat engines are operated in the state of
maximum efficiency.

This work has been supported by the National Natural Science
Foundation (No. 10575084), People’s Republic of China.
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